DocumentCode :
553009
Title :
An adaptive optimal clustering number algorithm for FKCM
Author :
Guihua Chen ; Zhenlei Wang ; Xin Wang ; Feng Qian
Author_Institution :
Key Lab. of Adv. Control & Optimization for Chem. Processes, East China Univ. of Sci. & Technol., Shanghai, China
Volume :
1
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
65
Lastpage :
69
Abstract :
In order to overcome the drawbacks of fuzzy kernel clustering method (FKCM) give the clustering number in advance, sensitive to the initial cluster centers and easy to be trapped into local optimum, the adaptive algorithm for optimal clustering number of FKCM (SAICFKCM) is proposed. The proposed method uses density-based algorithm to initialize cluster centers and kernel Xie-Beni validity index to determine the optimal number of categories, to achieve unsupervised fuzzy partition of data set. The simulation experiment and the classification of naphtha attribute data verify the feasibility and effectiveness of the proposed method.
Keywords :
fuzzy set theory; number theory; pattern classification; pattern clustering; statistical analysis; FKCM; SAICFKCM; adaptive optimal clustering number algorithm; cluster centers; clustering analysis; data set; density-based algorithm; fuzzy kernel clustering method; kernel Xie-Beni validity index; multivariate statistical analysis methods; naphtha attribute data classification; unsupervised pattern recognition; Algorithm design and analysis; Classification algorithms; Clustering algorithms; Indexes; Iris; Kernel; Noise; cluster analysis; fuzzy kernel clustering; initial cluster centers; validity index;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on
Conference_Location :
Shanghai
Print_ISBN :
978-1-61284-180-9
Type :
conf
DOI :
10.1109/FSKD.2011.6019489
Filename :
6019489
Link To Document :
بازگشت