• DocumentCode
    55682
  • Title

    Context Tree Estimation in Variable Length Hidden Markov Models

  • Author

    Dumont, Thierry

  • Author_Institution
    Dept. de Math., Univ. Paris-Ouest, Nanterre, France
  • Volume
    60
  • Issue
    6
  • fYear
    2014
  • fDate
    Jun-14
  • Firstpage
    3196
  • Lastpage
    3208
  • Abstract
    We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process, which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of the literatures of Finesso, and Gassiat and Boucheron. We propose an algorithm to efficiently compute the estimator and provide simulation studies to support our result.
  • Keywords
    hidden Markov models; information theory; trees (mathematics); context tree estimation; information-theoretic mixture inequalities; variable length hidden Markov models; Context; Density measurement; Estimation; Hidden Markov models; Markov processes; Upper bound; Variable length; consistent estimator; context tree; hidden Markov models; mixture inequalities;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2014.2314094
  • Filename
    6780620