DocumentCode
55682
Title
Context Tree Estimation in Variable Length Hidden Markov Models
Author
Dumont, Thierry
Author_Institution
Dept. de Math., Univ. Paris-Ouest, Nanterre, France
Volume
60
Issue
6
fYear
2014
fDate
Jun-14
Firstpage
3196
Lastpage
3208
Abstract
We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process, which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of the literatures of Finesso, and Gassiat and Boucheron. We propose an algorithm to efficiently compute the estimator and provide simulation studies to support our result.
Keywords
hidden Markov models; information theory; trees (mathematics); context tree estimation; information-theoretic mixture inequalities; variable length hidden Markov models; Context; Density measurement; Estimation; Hidden Markov models; Markov processes; Upper bound; Variable length; consistent estimator; context tree; hidden Markov models; mixture inequalities;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.2014.2314094
Filename
6780620
Link To Document