Title :
A protocol for space charge measurements in full-size HVDC extruded cables
Author :
Mazzanti, G. ; Chen, G. ; Fothergill, J.C. ; Hozumi, N. ; Li, J. ; Marzinotto, M. ; Mauseth, F. ; Morshuis, P. ; Reed, C. ; Tzimas, A. ; Kai Wu
Author_Institution :
Dept. of El. Energy Engin. Inf., Univ. of Bologna, Bologna, Italy
Abstract :
This position paper, prepared by the IEEE DEIS HVDC Cable Systems Technical Committee, illustrates a protocol recommended for the measurement of space charges in full-size HVDC extruded cables during load cycle qualification tests (either prequalification load cycles or type test load cycles). The protocol accounts for the experimental practices of space charge measurements in the thick insulation of coaxial cables in terms of poling time, depolarization time, heating and cooling of specimens, as well as for the experience gained very recently from such kind of measurements performed in the framework of qualification tests relevant to ongoing HVDC cable system projects. The goal of the protocol is not checking the compliance with any maximum acceptable limit of either space charge or electric field. Rather, this protocol aims at assessing the variation of the electric field profile in the cable insulation wall during poling time at the beginning and at the end of load cycle qualification tests for full-size HVDC extruded cables. Indeed, in the design stage the electric field distributions are determined by the cable geometry and by temperature gradient in the insulation. Thus, the design is based on macroscopic parameters conductivity and permittivity and how they depend upon temperature. Any disturbance of the electric field due to space charge accumulation will only be revealed during space charge measurements either in as-manufactured state or in the aged state after load cycle qualification tests.
Keywords :
HVDC power transmission; coaxial cables; dielectric polarisation; electric fields; power cable insulation; power cable testing; protocols; space charge; IEEE DEIS HVDC cable systems technical committee; cable geometry; coaxial cable insulation; cooling; depolarization time; electric field distribution; electric field disturbance; electric field profile variation assessment; full-size HVDC extruded cable; heating; load cycle qualification test; macroscopic parameter conductivity; permittivity; poling time; space charge accumulation; space charge measurement protocol; temperature gradient; Charge measurement; HVDC transmission; Power cable insulation; Power cables; Space charge; HVDC insulation; power cable testing; power cables; space charge;
Journal_Title :
Dielectrics and Electrical Insulation, IEEE Transactions on
DOI :
10.1109/TDEI.2014.004557