DocumentCode :
55883
Title :
Joint Opportunistic Beam and Spectrum Selection Schemes for Spectrum Sharing Systems With Limited Feedback
Author :
Sayed, Mostafa ; Abdallah, Mohamed ; Qaraqe, Khalid ; Tourki, Kamel ; Alouini, Mohamed-Slim
Author_Institution :
Univ. of Texas at Dallas, Richardson, TX, USA
Volume :
63
Issue :
9
fYear :
2014
fDate :
Nov. 2014
Firstpage :
4408
Lastpage :
4421
Abstract :
Spectrum sharing systems have been introduced to alleviate the problem of spectrum scarcity by allowing an unlicensed secondary user (SU) to share the spectrum with a licensed primary user (PU) under acceptable interference levels to the primary receiver (PU-Rx). In this paper, we consider a secondary link composed of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx). The secondary link is allowed to share the spectrum with a primary network composed of multiple PUs communicating over distinct frequency spectra with a primary base station. We develop a transmission scheme where the SU-Tx initially broadcasts a set of random beams over all the available primary spectra for which the PU-Rx sends back the index of the spectrum with the minimum interference level, as well as information that describes the interference value, for each beam. Based on the feedback information on the PU-Rx, the SU-Tx adapts the transmitted beams and then resends the new beams over the best primary spectrum for each beam to the SU-Rx. The SU-Rx selects the beam that maximizes the received signal-to-interference-plus-noise ratio (SINR) to be used in transmission over the next frame. We consider three cases for the level of feedback information describing the interference level. In the first case, the interference level is described by both its magnitude and phase; in the second case, only the magnitude is considered; and in the third case, we focus on a q-bit description of its magnitude. In the latter case, we propose a technique to find the optimal quantizer thresholds in a mean-square-error sense. We also develop a statistical analysis for the SINR statistics and the capacity and bit error rate of the secondary link and present numerical results that study the impact of the different system parameters.
Keywords :
array signal processing; broadcast communication; error statistics; feedback; mean square error methods; radio spectrum management; radiofrequency interference; SINR; beam selection scheme; beams transmission; bit error rate; feedback information; frequency spectra; licensed primary user; mean-square-error sense; multiple antennas; optimal quantizer thresholds; primary receiver; random beams; secondary transmitter; signal-to-interference-plus-noise ratio; single-antenna secondary receiver; spectrum scarcity; spectrum selection schemes; spectrum sharing systems; statistical analysis; transmission scheme; unlicensed secondary user; Interference constraints; Quantization (signal); Radio frequency; Receivers; Signal to noise ratio; Vectors; Beamforming; cognitive radio; multiantenna systems; spectrum sharing;
fLanguage :
English
Journal_Title :
Vehicular Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9545
Type :
jour
DOI :
10.1109/TVT.2014.2314302
Filename :
6780639
Link To Document :
بازگشت