• DocumentCode
    55962
  • Title

    A novel approach towards the determination of the time to breakdown of electrical machine insulating materials

  • Author

    Nyanteh, Yaw ; Graber, Lukas ; Srivastava, Sanjeev ; Edrington, Chris ; Cartes, David ; Rodrigo, Horatio

  • Author_Institution
    Center for Adv. Power Syst., Florida State Univ., Tallahassee, FL, USA
  • Volume
    22
  • Issue
    1
  • fYear
    2015
  • fDate
    Feb. 2015
  • Firstpage
    232
  • Lastpage
    240
  • Abstract
    This paper presents new approach to using Partial Discharge (PD) data for the prediction of the Remaining Useful Life (RUL) of dielectric materials undergoing breakdown. The method presented uses a thermodynamic macro-model in conjunction with an artificial neural network to associate the features in the PD data detected during breakdown to the electrical tree characteristics. The method is presented using electrical tree simulation data from a new dielectric breakdown simulation model. The simulation model is confirmed using experimental data.
  • Keywords
    dielectric materials; electric machine analysis computing; electric machines; insulating materials; machine insulation; neural nets; partial discharges; remaining life assessment; thermodynamics; trees (electrical); PD data; RUL; artificial neural network; dielectric breakdown simulation model; dielectric materials; electrical machine insulating materials; electrical tree simulation data; partial discharge data; remaining useful life; thermodynamic macro-model; time to breakdown determination; Breakdown voltage; Dielectric materials; Equations; Insulation; Mathematical model; Partial discharges; Dielectrics; artificial neural network; electrical tree; partial discharge; remaining useful life;
  • fLanguage
    English
  • Journal_Title
    Dielectrics and Electrical Insulation, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1070-9878
  • Type

    jour

  • DOI
    10.1109/TDEI.2014.004156
  • Filename
    7033392