Title :
High voltage, sub nanosecond feedthrough design for liquid breakdown studies
Author :
Cevallos, Michael ; Dickens, James ; Neuber, Andreas ; Krompholz, Herman
Author_Institution :
Center for Pulsed Power and Power Electronics Research, Departments of Electrical & Computer Engineering and Physics, Texas Tech University, Lubbock, 79409-3102, USA
Abstract :
Experiments in self-breakdown mode and pulsed breakdown at high over-voltages in standard electrode geometries are performed for liquids to gain a better understanding of their fundamental breakdown physics. Different liquids of interest include liquids such as super-cooled liquid nitrogen, oils, glycerols and water. A typical setup employs a discharge chamber with a cable discharge into a coaxial system with axial discharge, and a load line to simulate a matched terminating impedance, thus providing a sub-nanosecond response. This study is focused on the feed-through design of the coaxial cable into this type of discharge chamber, with the feed-through being the critical element with respect to maximum hold-off voltage. Diverse feedthroughs were designed and simulated using Maxwell 3-D Field Simulator Version 5. Several geometrically shaped feed-through transitions were simulated, including linearly and exponentially tapered, to minimize electrostatic fields, thus ensuring that the discharge occurs in the volume of interest and not between the inner and outer conductor at the transition from the insulation of the coaxial cable to the liquid. All feedthroughs are designed to match the incoming impedance of the coaxial cable. The size of the feedthroughs will vary from liquid to liquid in order to match the coaxial cable impedance of 50Ω. The discharge chamber has two main ports where the feed-through will enter the chamber. Each feed-through is built through a flange that covers the two main ports. This allows the use of the same discharge chamber for various liquids by changing the flanges on the main ports to match the particular liquid. The feedthroughs were designed and built to withstand voltages of up to 200 kV. The feedthroughs are also fitted with transmission line type current sensors and capacitive voltage dividers with fast amplifiers/attenuators in order to attain a complete range of information from amplitudes of 0.1mA to 1 kA with a temporal r- solution of 300 ps.
Keywords :
Electric breakdown;
Conference_Titel :
High-Power Particle Beams (BEAMS), 2002 14th International Conference on
Conference_Location :
Albuquerque, NM, USA
Print_ISBN :
978-0-7354-0107-5