DocumentCode :
563209
Title :
Fast discharge energy storage development for improving X-ray simulators
Author :
Sincerny, Peter ; Carboni, Vic ; Childers, Kendall ; Corcoran, Pat ; Hammon, Jud ; Lam, S.K. ; Miller, Richard ; Naff, Tom ; Smith, Ian ; Tucker, Terry ; Ennis, Joel ; Cooper, Robert ; Bell, David ; Davis, Randy
Author_Institution :
Titan Pulse Sciences Division, 2700 Merced Street, San Leandro, CA 94577 USA
Volume :
1
fYear :
2002
fDate :
23-28 June 2002
Firstpage :
77
Lastpage :
80
Abstract :
Over the last two years there have been design studies to investigate the impact of improvements in fast energy storage systems on the design of simulator upgrades (Double-EAGLE and Decade Quad) and on larger future simulators (40-MA to 60-MA PRS machine). The fast energy storage systems investigated in these design studies included Fast Marx Generators (FMG with √LC = 200 ns and √LC = 300 ns) and Linear Transformer Drivers (LTD). A design sketch of a compact 20-MA PRS driver and a potential upgrade of Double-EAGLE using FMG technology will be presented. The first concept that will be discussed is a 16-MA driver for PRS (plasma radiation source) loads. This generator would consist of 48 eight-stage FMG units and 13 m diameter and would drive the PRS directly without further pulse compression. The second concept that will be presented is a potential upgrade of an operational simulator, Double-EAGLE. This concept would utilize the FMG to replace the existing slower Marx generator, transfer capacitor and triggered gas switch. The basic building blocks for these future FMG driven machines are a low- inductance Marx switch and a low-inductance capacitor designed to be integrated with the new switch. These components are configured in a low-inductance FMG stage and then stacked in series to form a unit for the voltage required and a number of units in parallel for the required system inductance and stored energy. A review of the FMG component requirements and the status of the FMG component testing in a single-stage FMG configuration will also be presented. A four-stage FMG unit is being built and tested to demonstrate the required stage voltage and inductance. Results of these initial tests will be presented.
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High-Power Particle Beams (BEAMS), 2002 14th International Conference on
Conference_Location :
Albuquerque, NM, USA
ISSN :
0094-243X
Print_ISBN :
978-0-7354-0107-5
Type :
conf
Filename :
6219397
Link To Document :
بازگشت