• DocumentCode
    56516
  • Title

    Quantization of Eigen Subspace for Sparse Representation

  • Author

    Yilmaz, Onur ; Akansu, Ali N.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. Heights, Newark, NJ, USA
  • Volume
    63
  • Issue
    14
  • fYear
    2015
  • fDate
    15-Jul-15
  • Firstpage
    3576
  • Lastpage
    3585
  • Abstract
    We propose sparse Karhunen-Loeve Transform (SKLT) method to sparse eigen subspaces. The sparsity (cardinality reduction) is achieved through the pdf-optimized quantization of basis function (vector) set. It may be considered an extension of the simple and soft thresholding (ST) methods. The merit of the proposed framework for sparse representation is presented for auto-regressive order one, AR(1), discrete process and empirical correlation matrix of stock returns for NASDAQ-100 index. It is shown that SKLT is efficient to implement and outperforms several sparsity algorithms reported in the literature.
  • Keywords
    Karhunen-Loeve transforms; autoregressive processes; eigenvalues and eigenfunctions; quantisation (signal); signal representation; sparse matrices; AR(1); NASDAQ-100 index; SKLT method; ST methods; auto-regressive order one; basis function set; cardinality reduction; discrete process; empirical correlation matrix; pdf-optimized quantization; soft thresholding method; sparse Karhunen-Loeve transform method; sparse eigensubspace quantization; sparse representation; stock returns; Approximation methods; Loading; Principal component analysis; Quantization (signal); Sparse matrices; Transform coding; Transforms; Arcsine distribution; Karhunen–Loeve Transform (KLT); Lloyd-Max quantizer; cardinality reduction; dimension reduction; eigen decomposition; midtread (zero-zone) pdf-optimized quantizer; principal component analysis (PCA); sparse matrix; subspace methods; transform coding;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2015.2430831
  • Filename
    7103342