Title :
Review of genetic programming in modeling of machining processes
Author :
Garg, A. ; Tai, K.
Author_Institution :
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798
Abstract :
The mathematical modeling of machining processes has received immense attention and attracted a number of researchers because of its significant contribution to the overall cost and quality of product. The literature study demonstrates that conventional approaches such as statistical regression, response surface methodology, etc. requires physical understanding of the process for the erection of precise and accurate models. The statistical assumptions of such models induce ambiguity in the prediction ability of the model. Such limitations do not prevail in the nonconventional modeling approaches such as Genetic Programming (GP), Artificial Neural Network (ANN), Fuzzy Logic (FL), Genetic Algorithm (GA), etc. and therefore ensures trustworthiness in the prediction ability of the model. The present work discusses about the notion, application, abilities and limitations of Genetic Programming for modeling of machining processes. The characteristics of GP uncovered from the current review are compared with features of other modeling approaches applied to machining processes.
Keywords :
Artificial Neural Network; Gene Expression Programming; Genetic Programming; Machining; Regression;
Conference_Titel :
Modelling, Identification & Control (ICMIC), 2012 Proceedings of International Conference on
Conference_Location :
Wuhan, Hubei, China
Print_ISBN :
978-1-4673-1524-1