DocumentCode :
566265
Title :
Thermal stress analysis of die stacks with fine-pitch IMC interconnections for 3D integration
Author :
Kohara, Sayuri ; Horibe, Akihiro ; Sueoka, Kuniaki ; Matsumoto, Keiji ; Yamada, Fumiaki ; Orii, Yasumitsu ; Sakuma, Katsuyuki ; Kinoshita, Takahiro ; Kawakami, Takashi
Author_Institution :
Assoc. of Super-Adv. Electron. Technol. (ASET), Yamato, Japan
fYear :
2012
fDate :
Jan. 31 2012-Feb. 2 2012
Firstpage :
1
Lastpage :
7
Abstract :
The thermo-mechanical reliability of stacked die structures is a critical issue in 3D packaging. The assessment of the stress and the warpage of silicon dies in 3D stacked structures become important in achieving low-stress and low-warpage 3D packaging. However the parametric analyses of thermal stress and die-warpage by rigorous finite element analysis can be time consuming for 3D systems, since it involves many layers of materials such as silicon dies and organic layers. In this paper, we used the finite element method (FEM) with a simple 2D model to analyze the stress under thermal cycling condition on the die stack system and applied the 1D multilayered beam theory to perform parametric analyses of the die-warpage for the thermal stress condition. We used a 3D slice model to analyze the stress in the intermetallic compound (IMC) joints. The die-warpage values and the high stress sites in stacked structures obtained by these analyses were consistent with the measured data and experimental observations from the thermal cycle tests on full-area-array 40 μm bump pitch stacked die test vehicles with intermetallic compound joints.
Keywords :
finite element analysis; integrated circuit interconnections; integrated circuit packaging; thermal management (packaging); thermal stresses; three-dimensional integrated circuits; 1D multilayered beam theory; 2D model; 3D integration; 3D slice model; 3D stacked structures; FEM; die stack system; die-warpage values; fine-pitch IMC interconnections; finite element method; full-area-array bump pitch stacked die test vehicles; intermetallic compound joints; low-stress 3D packaging; low-warpage 3D packaging; organic layers; parametric analyses; silicon dies; thermal cycling condition; thermal stress analysis; Analytical models; Finite element methods; Joints; Silicon; Stress; Temperature measurement; Thermal stresses; Intermetallic compound bonding; Three-dimensional (3D) integration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
3D Systems Integration Conference (3DIC), 2011 IEEE International
Conference_Location :
Osaka
Print_ISBN :
978-1-4673-2189-1
Type :
conf
DOI :
10.1109/3DIC.2012.6263002
Filename :
6263002
Link To Document :
بازگشت