DocumentCode :
571239
Title :
Stable and unstable periodic solutions to the mathieu-duffing oscillator
Author :
Luo, Albert C J ; O´Connor, Dennis
Author_Institution :
Mech. Eng., Southern Illinois Univ. Edwardsville, Edwardsville, IL, USA
fYear :
2012
fDate :
6-11 Aug. 2012
Firstpage :
201
Lastpage :
204
Abstract :
In this paper, stable and unstable periodic motions in the Mathieu-Duffing oscillator are investigated through the harmonic balance method. The approximate, analytical solutions of periodic motion are achieved, and the corresponding stability and bifurcation analysis produces motion complexity parameter maps. Numerical illustrations of periodic motions are given for a better understanding of periodic motions.
Keywords :
bifurcation; nonlinear equations; numerical analysis; oscillators; stability; Mathieu-Duffing oscillator; analytical solution; approximate solution; bifurcation analysis; harmonic balance method; motion complexity parameter maps; periodic motion better understanding; periodic motion numerical illustrations; stability analysis; stable periodic motion; stable periodic solution; unstable periodic motion; unstable periodic solution; Approximation methods; Bifurcation; Chaos; Harmonic analysis; Mathematical model; Oscillators;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nonlinear Science and Complexity (NSC), 2012 IEEE 4th International Conference on
Conference_Location :
Budapest
Print_ISBN :
978-1-4673-2702-2
Electronic_ISBN :
978-1-4673-2701-5
Type :
conf
DOI :
10.1109/NSC.2012.6304754
Filename :
6304754
Link To Document :
بازگشت