• DocumentCode
    571239
  • Title

    Stable and unstable periodic solutions to the mathieu-duffing oscillator

  • Author

    Luo, Albert C J ; O´Connor, Dennis

  • Author_Institution
    Mech. Eng., Southern Illinois Univ. Edwardsville, Edwardsville, IL, USA
  • fYear
    2012
  • fDate
    6-11 Aug. 2012
  • Firstpage
    201
  • Lastpage
    204
  • Abstract
    In this paper, stable and unstable periodic motions in the Mathieu-Duffing oscillator are investigated through the harmonic balance method. The approximate, analytical solutions of periodic motion are achieved, and the corresponding stability and bifurcation analysis produces motion complexity parameter maps. Numerical illustrations of periodic motions are given for a better understanding of periodic motions.
  • Keywords
    bifurcation; nonlinear equations; numerical analysis; oscillators; stability; Mathieu-Duffing oscillator; analytical solution; approximate solution; bifurcation analysis; harmonic balance method; motion complexity parameter maps; periodic motion better understanding; periodic motion numerical illustrations; stability analysis; stable periodic motion; stable periodic solution; unstable periodic motion; unstable periodic solution; Approximation methods; Bifurcation; Chaos; Harmonic analysis; Mathematical model; Oscillators;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Nonlinear Science and Complexity (NSC), 2012 IEEE 4th International Conference on
  • Conference_Location
    Budapest
  • Print_ISBN
    978-1-4673-2702-2
  • Electronic_ISBN
    978-1-4673-2701-5
  • Type

    conf

  • DOI
    10.1109/NSC.2012.6304754
  • Filename
    6304754