DocumentCode
571239
Title
Stable and unstable periodic solutions to the mathieu-duffing oscillator
Author
Luo, Albert C J ; O´Connor, Dennis
Author_Institution
Mech. Eng., Southern Illinois Univ. Edwardsville, Edwardsville, IL, USA
fYear
2012
fDate
6-11 Aug. 2012
Firstpage
201
Lastpage
204
Abstract
In this paper, stable and unstable periodic motions in the Mathieu-Duffing oscillator are investigated through the harmonic balance method. The approximate, analytical solutions of periodic motion are achieved, and the corresponding stability and bifurcation analysis produces motion complexity parameter maps. Numerical illustrations of periodic motions are given for a better understanding of periodic motions.
Keywords
bifurcation; nonlinear equations; numerical analysis; oscillators; stability; Mathieu-Duffing oscillator; analytical solution; approximate solution; bifurcation analysis; harmonic balance method; motion complexity parameter maps; periodic motion better understanding; periodic motion numerical illustrations; stability analysis; stable periodic motion; stable periodic solution; unstable periodic motion; unstable periodic solution; Approximation methods; Bifurcation; Chaos; Harmonic analysis; Mathematical model; Oscillators;
fLanguage
English
Publisher
ieee
Conference_Titel
Nonlinear Science and Complexity (NSC), 2012 IEEE 4th International Conference on
Conference_Location
Budapest
Print_ISBN
978-1-4673-2702-2
Electronic_ISBN
978-1-4673-2701-5
Type
conf
DOI
10.1109/NSC.2012.6304754
Filename
6304754
Link To Document