DocumentCode :
573205
Title :
An introduction to deep learning
Author :
Lauzon, Francis Quintal
Author_Institution :
Lab. de Vision et d´´Intell. Artificielle, Ecole de Technol. Super., Montreal, QC, Canada
fYear :
2012
fDate :
2-5 July 2012
Firstpage :
1438
Lastpage :
1439
Abstract :
Deep learning allows automatically learning multiple levels of representations of the underlying distribution of the data to be modeled. In this work, a specific implementation called stacked denoising autoencoders is explored. We contribute by demonstrating that this kind of representation coupled to a SVM improves classification error on MNIST over the usual deep learning approach where a logistic regression layer is added to the stack of denoising autoencoders.
Keywords :
learning (artificial intelligence); regression analysis; support vector machines; MNIST; SVM; classification error; data distribution; deep learning approach; logistic regression layer; stacked denoising autoencoders; Classification algorithms; Decoding; Logistics; Machine learning; Noise reduction; Support vector machines; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on
Conference_Location :
Montreal, QC
Print_ISBN :
978-1-4673-0381-1
Electronic_ISBN :
978-1-4673-0380-4
Type :
conf
DOI :
10.1109/ISSPA.2012.6310529
Filename :
6310529
Link To Document :
بازگشت