Title :
Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization
Author :
Omidvar, Mohammad Nabi ; Xiaodong Li ; Yi Mei ; Xin Yao
Author_Institution :
Evolutionary Comput. & Machine Learning Group, RMIT Univ., Melbourne, VIC, Australia
Abstract :
Cooperative co-evolution has been introduced into evolutionary algorithms with the aim of solving increasingly complex optimization problems through a divide-and-conquer paradigm. In theory, the idea of co-adapted subcomponents is desirable for solving large-scale optimization problems. However, in practice, without prior knowledge about the problem, it is not clear how the problem should be decomposed. In this paper, we propose an automatic decomposition strategy called differential grouping that can uncover the underlying interaction structure of the decision variables and form subcomponents such that the interdependence between them is kept to a minimum. We show mathematically how such a decomposition strategy can be derived from a definition of partial separability. The empirical studies show that such near-optimal decomposition can greatly improve the solution quality on large-scale global optimization problems. Finally, we show how such an automated decomposition allows for a better approximation of the contribution of various subcomponents, leading to a more efficient assignment of the computational budget to various subcomponents.
Keywords :
divide and conquer methods; evolutionary computation; automatic decomposition strategy; co-adapted subcomponents; cooperative co-evolution; decision variable interaction structure; differential grouping; divide-and-conquer paradigm; evolutionary algorithms; large-scale global optimization problems; near-optimal decomposition; partial separability; Context; Couplings; Evolutionary computation; Genetic algorithms; Linear programming; Optimization; Vectors; Cooperative co-evolution; cooperative co-evolution; large-scale optimization; non-separability; nonseparability; numerical optimization; problem decomposition;
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2013.2281543