DocumentCode :
57331
Title :
A Fully Differential Charge-Balanced Accelerometer for Electronic Stability Control
Author :
Petkov, V.P. ; Balachandran, G.K. ; Beintner, J.
Author_Institution :
Robert Bosch Res. & Technol. Center, Palo Alto, CA, USA
Volume :
49
Issue :
1
fYear :
2014
fDate :
Jan. 2014
Firstpage :
262
Lastpage :
270
Abstract :
An accelerometer for electronic stability control utilizes a two-mass mechanical sensor element to implement a fully-differential signal path, achieving robustness against electromagnetic interference (EMI) without the need for external shielding in the package. The EMI rejection is augmented further with a pseudo-random chopping scheme, which spreads the interference over a wide bandwidth, reducing its in-band portion to the level of the noise floor. The chopping function maintains zero-mean voltage waveforms across the sensor electrodes, which is also beneficial for the long-term offset stability of the device. A charge-balanced capacitance-to-voltage converter provides linear transduction for displacements of the proof-mass up to 70% of the gap and minimizes the residual electrostatic forces. A dual-axis design occupies 1.1 mm 2 in 0.18- μm CMOS and consumes 820 μA from an internally regulated 1.9-V supply. The system achieves 380 μg/ √Hz noise floor and 84-dB dynamic range. The offset variation in the automotive temperature range of -40 to +140°C has a 3 σ range of ±11 mg.
Keywords :
CMOS integrated circuits; accelerometers; automotive electronics; capacitive sensors; electromagnetic interference; readout electronics; CMOS integrated circuit; EMI rejection; charge balanced capacitance-voltage converter; current 820 muA; dual axis design; electromagnetic interference robustness; electronic stability control; fully differential charge balanced accelerometer; fully differential signal path; linear transduction; long term offset stability; pseudorandom chopping function; sensor electrode; size 0.18 mum; two-mass mechanical sensor element; voltage 1.9 V; zero mean voltage waveform; Accelerometers; Capacitance; Capacitors; Electrodes; Electromagnetic interference; Electrostatics; Force; Automotive; MEMS accelerometer; capacitive; charge-balanced; electronic stability control (ESC);
fLanguage :
English
Journal_Title :
Solid-State Circuits, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9200
Type :
jour
DOI :
10.1109/JSSC.2013.2284348
Filename :
6636088
Link To Document :
بازگشت