DocumentCode :
574518
Title :
Reducing computational time via order reduction of a class of reaction-diffusion systems
Author :
Lopez-Caamal, Fernando ; Garcia, Miriam R. ; Middleton, R.H.
Author_Institution :
Hamilton Inst., Nat. Univ. of Ireland Maynooth, Maynooth, Ireland
fYear :
2012
fDate :
27-29 June 2012
Firstpage :
1494
Lastpage :
1499
Abstract :
In this paper, we consider a class of reaction-diffusion PDEs. For this class, a suitable state transformation allows conversion to a heat equation together with a lower order PDE set. By giving an explicit solution to the heat equation we are able to obtain a complete solution to the original PDE. By focusing on the computational load, we give a comparison of the pure numerical, analytical/numerical, analytical/approximated, and approximated methods of solving the PDE. In some examples, we note an almost order of magnitude improvement in computational load.
Keywords :
approximation theory; numerical analysis; partial differential equations; reaction-diffusion systems; analytical-approximated methods; analytical-numerical methods; computational load; computational time; heat equation; lower order PDE set; magnitude improvement; order reduction; original PDE; reaction-diffusion PDE; reaction-diffusion systems; state transformation; Boundary conditions; Eigenvalues and eigenfunctions; Equations; Heating; Laplace equations; Mathematical model; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2012
Conference_Location :
Montreal, QC
ISSN :
0743-1619
Print_ISBN :
978-1-4577-1095-7
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2012.6315103
Filename :
6315103
Link To Document :
بازگشت