DocumentCode :
574639
Title :
Multiple model robust dynamic programming
Author :
Whitman, E.C. ; Atkeson, Christopher G.
Author_Institution :
Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2012
fDate :
27-29 June 2012
Firstpage :
5998
Lastpage :
6004
Abstract :
Modeling error is a common problem for modelbased control techniques. We present multiple model dynamic programming (MMDP) as a method to generate controllers that are robust to modeling error. Our method generates controllers that are approximately optimal for a collection of models, thereby forcing the controller to be less model-dependent. We compare MMDP to stochastic dynamic programming, minimax dynamic programming, and a baseline implementation of dynamic programming on the test problem of pendulum swing-up. We simulate modeling error by varying model parameters.
Keywords :
control system synthesis; dynamic programming; modelling; nonlinear control systems; optimal control; MMDP; controller generation method; model parameter variation; model-based control techniques; modeling error robustness; multiple model robust dynamic programming; pendulum swing-up test problem; Additives; Dynamic programming; Noise; Process control; Robustness; Stochastic processes; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2012
Conference_Location :
Montreal, QC
ISSN :
0743-1619
Print_ISBN :
978-1-4577-1095-7
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2012.6315225
Filename :
6315225
Link To Document :
بازگشت