DocumentCode :
575638
Title :
Best Integer Equivariant estimation for Precise Point Positioning
Author :
Wen, Zhibo ; Henkel, Patrick ; Brack, Andreas ; Günther, Christoph
Author_Institution :
Inst. for Commun. & Navig., Tech. Univ. Munchen, Munich, Germany
fYear :
2012
fDate :
12-14 Sept. 2012
Firstpage :
279
Lastpage :
282
Abstract :
A key prerequisite for Precise Point Positioning (PPP) with Global Navigation Satellite Systems (GNSS) is the precise knowledge of satellite phase and code biases. This paper proposes a method, that is based on a very general measurement model with an individual phase and code bias for each receiver, satellite and frequency. We compute a recursive least-squares float solution with a Kalman filter, and a subsequent ambiguity fixed solution using Teunissen´s Best Integer Equivariant (BIE) estimator. The latter one minimizes the mean squared error (MSE) and, thus, outperforms the well-known Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method. Simulation results show the achievable performance of the BIE estimator in comparison to the LAMBDA method.
Keywords :
Kalman filters; least squares approximations; satellite navigation; BIE estimator; GNSS; Kalman filter; LAMBDA method; MSE; Teunissen´s best integer equivariant estimator; best integer equivariant estimation; code biases; global navigation satellite systems; least-squares ambiguity decorrelation adjustment; mean squared error; precise point positioning; recursive least-squares float solution; satellite phase; Delay; Estimation; Frequency measurement; Kalman filters; Phase measurement; Receivers; Satellites; Best Integer Equivariant Estimation; Integer Ambiguity Resolution; Precise Point Positioning; Satellite phase and code biases;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
ELMAR, 2012 Proceedings
Conference_Location :
Zadar
ISSN :
1334-2630
Print_ISBN :
978-1-4673-1243-1
Type :
conf
Filename :
6338525
Link To Document :
بازگشت