Title :
Radio Alignment for Inductive Charging of Electric Vehicles
Author :
Wei Ni ; Collings, Iain B. ; Xin Wang ; Ren Ping Liu ; Kajan, Alija ; Hedley, Mark ; Abolhasan, Mehran
Author_Institution :
Digital Productivity Flagship, Commonwealth Sci. & Ind. Res. Organ. (CSIRO), Marsfield, NSW, Australia
Abstract :
To maximize power transfer for inductively charging electric vehicles (EVs), charger and battery coils must be aligned. Wireless sensors can be installed to estimate misalignments; however, existing ranging techniques cannot satisfy the precision requirements of the misalignment estimation. We propose a high-precision wireless ranging and misalignment estimation scheme, where high precision is achieved by iteratively measuring, estimating, and aligning the coils. Another key aspect is to convert the nonconvex misalignment estimation to a more tractable problem with a convex objective. We develop a conditional gradient descent method to solve the problem, which performs gradient descent (or conditional gradient descent on the boundary of the search space) and projects out-of-boundary points back into the space. Employing experimentally validated models, we show that our scheme can achieve 92% of the efficiency of perfectly aligned coils in 90% of operations, and tolerate correlated distance measurement errors. In contrast, the prior art is susceptible to correlation, undergoing a significant efficiency degradation of 18.5%.
Keywords :
coils; distance measurement; electric vehicles; estimation theory; gradient methods; inductive power transmission; secondary cells; EV; battery coil; charger coil; conditional gradient descent method; distance measurement error; electric vehicle; high-precision wireless ranging technique; inductive charging; nonconvex misalignment estimation; power transfer; radio alignment; wireless sensor; Batteries; Coils; Distance measurement; Estimation; Sensors; Wireless communication; Wireless sensor networks; Coil alignment; Electric vehicle; coil alignment; electric vehicle (EV); inductive charging; wireless ranging;
Journal_Title :
Industrial Informatics, IEEE Transactions on
DOI :
10.1109/TII.2015.2400925