DocumentCode :
576697
Title :
Automatic landslide recognition through Optimum-Path Forest
Author :
Pisani, R. ; Riedel, P. ; Costa, K. ; Nakamura, R. ; Pereira, C. ; Rosa, G. ; Papa, J.
Author_Institution :
Geosci. & Exact Sci. Inst., UNESP - Sao Paulo State Univ., Sao Paulo, Brazil
fYear :
2012
fDate :
22-27 July 2012
Firstpage :
6228
Lastpage :
6231
Abstract :
In this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach.
Keywords :
geomorphology; geophysical image processing; geophysical techniques; image classification; object recognition; remote sensing; trees (mathematics); AD 2010 03; Bayesian classifier; Brazil; Duque de Caxias city; Geoeye-MS satellite; OPF classifier; Rio de Janeiro State; SVM; automatic landslide recognition; high steep area; kernel mapping; optimum-path forest; pipeline area; radial basis function; supervised classification; Cities and towns; Pattern recognition; Prototypes; Soil; Support vector machines; Terrain factors; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International
Conference_Location :
Munich
ISSN :
2153-6996
Print_ISBN :
978-1-4673-1160-1
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2012.6352681
Filename :
6352681
Link To Document :
بازگشت