• DocumentCode
    577154
  • Title

    Design of new soft sensors based on PCA, genetic algorithm and neural network for parameters estimation of a petroleum reservoir

  • Author

    Alaei, Hesam Komari ; Alaei, Hamed Komai

  • Author_Institution
    R&D Dept., Nat. Iranian Gas Co., Khorasan, Iran
  • fYear
    2011
  • fDate
    27-29 Dec. 2011
  • Firstpage
    823
  • Lastpage
    828
  • Abstract
    A new set of soft sensors is presented, based on principal component analysis (PCA), genetic algorithm (GA) and artificial neural network (ANN) methodologies for parameters estimation of a petroleum reservoir. The crude diagrams of reservoir parameters provide valuable evaluation for petro-physical parameters. These parameters, however, are usually difficult to measure due to limitations insights on cost, reliability considerations, inappropriate instrument maintenance and sensor failures. PCA and genetic algorithm is utilized to develop new soft sensors to incorporate reliability and prediction capabilities of ANN. Genetic algorithms are used to decide the initial weights of the gradient decent methods so that all the initial weights can be searched intelligently. The genetic operators and parameters are carefully designed and set avoiding premature convergence and permutation problems. The proposed algorithm combines the local searching ability of the gradient-based back-propagation (BP) strategy with the global searching ability of genetic algorithms in the PCA subspaces. The developed soft sensors are applied to reconstruct parameters of Marun reservoir located in Ahwaz, Iran, by utilizing the available geophysical well log data.
  • Keywords
    genetic algorithms; hydrocarbon reservoirs; neural nets; parameter estimation; principal component analysis; reliability; ANN; Ahwaz; GA; Iran; Marun reservoir; PCA; artificial neural network; genetic algorithm; gradient-based backpropagation; parameters estimation; petroleum reservoir; principal component analysis; reliability; soft sensors; Automation; Instruments; Genetic Algorithm; Neural network; Principal component analysis; Soft sensors; Well log data;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control, Instrumentation and Automation (ICCIA), 2011 2nd International Conference on
  • Conference_Location
    Shiraz
  • Print_ISBN
    978-1-4673-1689-7
  • Type

    conf

  • DOI
    10.1109/ICCIAutom.2011.6356768
  • Filename
    6356768