• DocumentCode
    577808
  • Title

    Recursive identification of parameters in the minimum variance control

  • Author

    Yao, Jie ; Wang, Jiang-hong

  • Author_Institution
    Dept. of the Mech. & Electron., Jingdezhen Ceramic Inst. Jingdezhen, Jingdezhen, China
  • fYear
    2012
  • fDate
    6-8 July 2012
  • Firstpage
    2870
  • Lastpage
    2877
  • Abstract
    This paper focus on the parameter recursive identification problems in minimum variance control system from the perspective of identification. Consider the unknown parameter vector of the ARMAX model in the minimum variance closed loop control, we propose multi-innovation recursive least-squares identification method and separable iterative recursive least-squares identification method to identify and estimate the unknown parameters vector in the ARMAX model on line. When excited by the white noise, the two identification methods will give the unbiased estimation about the unknown parameter vector. When excited by the color noise, only the separable iterative recursive least-squares identification method can give the unbiased estimation.
  • Keywords
    autoregressive moving average processes; closed loop systems; control system synthesis; iterative methods; least mean squares methods; recursive estimation; white noise; ARMAX model; closed loop control; color noise; iterative recursive least-squares identification; minimum variance control; multiinnovation recursive least-squares method; parameter recursive identification problem; parameter vector; white noise; Automation; Ceramics; Estimation; Finite impulse response filter; Intelligent control; Iterative methods; Vectors; minimum variance control; recursive identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control and Automation (WCICA), 2012 10th World Congress on
  • Conference_Location
    Beijing
  • Print_ISBN
    978-1-4673-1397-1
  • Type

    conf

  • DOI
    10.1109/WCICA.2012.6358360
  • Filename
    6358360