DocumentCode :
577827
Title :
Recursive identification for Wiener-Hammerstein systems using instrumental variable
Author :
Chen Xi ; Fang Hai-Tao
Author_Institution :
Inst. of Syst. Sci., Beijing, China
fYear :
2012
fDate :
6-8 July 2012
Firstpage :
3043
Lastpage :
3048
Abstract :
An identification method is discussed that deals with the Wiener-Hammerstein systems of general nonlinearity. By introducing a suitable instrumental variable a new algorithm is presented to recursively estimate the linear subsystems using stochastic approximation algorithm. The kernel nonparametric method is used to estimate the nonlinear function. The consistent analysis of the method is given under mild condition. A simulation example is provided justifying the proposed method.
Keywords :
approximation theory; linear systems; nonlinear functions; nonparametric statistics; recursive estimation; stochastic processes; stochastic systems; Wiener-Hammerstein systems; consistent analysis; general nonlinearity; identification method; instrumental variable; kernel nonparametric method; linear subsystems; nonlinear function estimation; recursive estimation; recursive identification; stochastic approximation algorithm; Algorithm design and analysis; Approximation algorithms; Equations; Estimation; Instruments; Kernel; Nonlinear systems; Instrumental variable; Recursive estimate; Wiener-Hammerstein systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation (WCICA), 2012 10th World Congress on
Conference_Location :
Beijing
Print_ISBN :
978-1-4673-1397-1
Type :
conf
DOI :
10.1109/WCICA.2012.6358393
Filename :
6358393
Link To Document :
بازگشت