• DocumentCode
    578392
  • Title

    Design of parameter estimator using ant colony system

  • Author

    Hung-Ching Lu ; Hsi-Kuang Liu ; Yang, Lian-fue

  • Author_Institution
    Dept. of Electr. Eng., Tatung Univ., Taipei, Taiwan
  • Volume
    3
  • fYear
    2012
  • fDate
    15-17 July 2012
  • Firstpage
    1224
  • Lastpage
    1230
  • Abstract
    In this paper, a parameter estimator using adaptive ant colony system (adaptive ACS) algorithm is proposed for improving the precise parameter of the controller which is difficult to obtain. Ant family, a cooperative agent algorithm, has characteristics of positive feedback, distributed computation, and the use of a constructive greedy heuristic. Hence, the searching pattern of ACS algorithm is a discrete type such that it can not be suitably employed in the parameter estimation of some uncertain system. In order to overcome these problems, the adaptive ACS algorithm is proposed. And, nonlinear functions are adopted in each layer of searching patterns of adaptive ACS algorithm for rapid searching of the global optimal solution. By tuning the parameter of nonlinear function, the parameter estimation of uncertain system can be quickly obtained by the adaptive ACS estimator in the initial state. Moreover, the proposed estimator provides real-time estimation value of parameter of the controller. Finally, the effectiveness of the proposed adaptive ACS algorithm has been verified by simulations.
  • Keywords
    ant colony optimisation; feedback; parameter estimation; real-time systems; uncertain systems; adaptive ACS algorithm; ant colony system; constructive greedy heuristic; controller parameter estimation; cooperative agent algorithm; discrete type ACS algorithm; distributed computation; nonlinear function parameter; positive feedback; real-time parameter estimation value; uncertain system; Abstracts; Adaptive ant colony system; Distributed computation; Parameter estimation; Uncertain system;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning and Cybernetics (ICMLC), 2012 International Conference on
  • Conference_Location
    Xian
  • ISSN
    2160-133X
  • Print_ISBN
    978-1-4673-1484-8
  • Type

    conf

  • DOI
    10.1109/ICMLC.2012.6359530
  • Filename
    6359530