DocumentCode :
57850
Title :
Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems
Author :
Ghadimi, Euhanna ; Teixeira, Andre ; Shames, Iman ; Johansson, Mikael
Author_Institution :
ACCESS Linnaeus Center, R. Inst. of Technol., Stockholm, Sweden
Volume :
60
Issue :
3
fYear :
2015
fDate :
Mar-15
Firstpage :
644
Lastpage :
658
Abstract :
The alternating direction method of multipliers (ADMM) has emerged as a powerful technique for large-scale structured optimization. Despite many recent results on the convergence properties of ADMM, a quantitative characterization of the impact of the algorithm parameters on the convergence times of the method is still lacking. In this paper we find the optimal algorithm parameters that minimize the convergence factor of the ADMM iterates in the context of ℓ2-regularized minimization and constrained quadratic programming. Numerical examples show that our parameter selection rules significantly outperform existing alternatives in the literature.
Keywords :
minimisation; quadratic programming; ℓ2-regularized minimization; ADMM; alternating direction method of multipliers; convergence factor; convergence properties; large-scale structured optimization; optimal parameter selection; quadratic problems; quadratic programming; Convergence; Eigenvalues and eigenfunctions; Estimation; Quadratic programming; Tin; Vectors; ADMM; convergence rate; optimal step-size; optimization algorithm;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2014.2354892
Filename :
6892987
Link To Document :
بازگشت