Title :
Lip Segmentation under MAP-MRF Framework with Automatic Selection of Local Observation Scale and Number of Segments
Author :
Yiu-ming Cheung ; Meng Li ; Xiaochun Cao ; Xinge You
Author_Institution :
Dept. of Comput. Sci., Hong Kong Baptist Univ., Hong Kong, China
Abstract :
This paper addresses the problem of segmenting lip region from frontal human face image. Supposing each pixel of the target image has an optimal local scale from the segmentation viewpoint, we treat the lip segmentation problem as a combination of observation scale selection and observed data classification. Accordingly, we propose a hierarchical multiscale Markov random field (MRF) model to represent the membership map of each input pixel to a specific segment and local-scale map simultaneously. Subsequently, lip segmentation can be formulated as an optimal problem in the maximum a posteriori (MAP)-MRF framework. Then, we present a rival-penalized iterative algorithm to implement the segmentation, which is independent of the number of predefined segments. The proposed method mainly features two aspects: 1) its performance is independent of the predefined number of segments, and 2) it takes into account the local optimal observation scale for each pixel. Finally, we conduct the experiments on four benchmark databases, i.e. AR, CVL, GTAV, and VidTIMIT. Experimental results show that the proposed method is robust to the segment number that changes with a speaker´s appearance, and can enhance the segmentation accuracy by taking advantage of the local optimal observation scale information.
Keywords :
Markov processes; face recognition; image segmentation; visual databases; MAP-MRF framework; MRF; Markov random field; automatic selection; benchmark databases; frontal human face image; lip region segmentation; lip segmentation; local observation scale; maximum a posteriori; observation scale selection; observed data classification; speaker appearance; target image; Accuracy; Educational institutions; Electronic mail; Image color analysis; Image segmentation; Shape; Visualization; Lip segmentation; MAP-MRF framework; local scale selection; number of segments;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2014.2331137