DocumentCode :
57852
Title :
Coverage and Energy Consumption Control in Mobile Heterogeneous Wireless Sensor Networks
Author :
Xinbing Wang ; Sihui Han ; Yibo Wu ; Xiao Wang
Author_Institution :
Shanghai Jiaotong Univ., Shanghai, China
Volume :
58
Issue :
4
fYear :
2013
fDate :
Apr-13
Firstpage :
975
Lastpage :
988
Abstract :
In this paper, we investigate the coverage and energy consumption control in mobile heterogeneous wireless sensor networks (WSNs). By term heterogeneous, we mean that sensors in the network have various sensing radius, which is an inherent property of many applied WSNs. Two sensor deployment schemes are considered-uniform and Poisson schemes. We study the asymptotic coverage under uniform deployment scheme with i.i.d. and 1-D random walk mobility model, respectively. We propose the equivalent sensing radius (ESR) for both cases and derive the critical ESR correspondingly. Our results show that the network performance largely depends on ESR. By controlling ESR, we can always promise the network achieve full coverage, regardless of the total number of sensors or the sensing radius of a single senor under random mobility patterns, which is a much easier and more general way to operate coverage control. Meanwhile, we can operate a tradeoff control between coverage performance and energy consumption by adjusting ESR. We demonstrate that 1-D random walk mobility can decrease the sensing energy consumption under certain delay tolerance, though requires larger ESR. Also, we characterize the role of heterogeneity in coverage and energy performance of WSNs under these two mobility models, and present the discrepancy of the impact of heterogeneity under different models. Under the Poisson deployment scheme, we investigate dynamic k-coverage of WSNs with 2-D random walk mobility model. We present the relation between network coverage and the sensing range, which indicates how coverage varies according to sensing capability. Both k -coverage at an instant and over a time interval are explored and we derive the expectation of fraction of the whole operational region that is k-covered, which also identifies the coverage improvement brought by mobility.
Keywords :
energy consumption; mobile radio; power control; telecommunication control; wireless sensor networks; 1-D random walk mobility model; Poisson schemes; energy consumption control; mobile heterogeneous wireless sensor networks; mobility models; sensor deployment schemes; Delay; Energy consumption; Mobile communication; Mobile computing; Robot sensing systems; Wireless sensor networks; Coverage control; energy consumption control; heterogeneity; mobility; scaling law;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2012.2225511
Filename :
6332486
Link To Document :
بازگشت