• DocumentCode
    5789
  • Title

    New Approach to Noncausal Identification of Nonstationary Stochastic FIR Systems Subject to Both Smooth and Abrupt Parameter Changes

  • Author

    Niedzwiecki, Maciej ; Gackowski, S.

  • Author_Institution
    Dept. of Autom. Control, Gdansk Univ. of Technol., Gdańsk, Poland
  • Volume
    58
  • Issue
    7
  • fYear
    2013
  • fDate
    Jul-13
  • Firstpage
    1847
  • Lastpage
    1853
  • Abstract
    In this technical note, we consider the problem of finite-interval parameter smoothing for a class of nonstationary linear stochastic systems subject to both smooth and abrupt parameter changes. The proposed parallel estimation scheme combines the estimates yielded by several exponentially weighted basis function algorithms. The resulting smoother automatically adjusts its smoothing bandwidth to the type and rate of nonstationarity of the identified system. It also allows one to account for the distribution of the measurement noise.
  • Keywords
    FIR filters; linear systems; parameter estimation; stochastic systems; exponentially weighted basis function algorithms; finite-interval parameter smoothing; measurement noise distribution; noncausal identification approach; nonstationary linear stochastic systems; nonstationary stochastic FIR systems; parallel estimation scheme; parameter changes; Algorithm design and analysis; Estimation; Kalman filters; Noise; Smoothing methods; Trajectory; Vectors; Identification of nonstationary systems; parameter smoothing;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2013.2238995
  • Filename
    6409397