DocumentCode :
5789
Title :
New Approach to Noncausal Identification of Nonstationary Stochastic FIR Systems Subject to Both Smooth and Abrupt Parameter Changes
Author :
Niedzwiecki, Maciej ; Gackowski, S.
Author_Institution :
Dept. of Autom. Control, Gdansk Univ. of Technol., Gdańsk, Poland
Volume :
58
Issue :
7
fYear :
2013
fDate :
Jul-13
Firstpage :
1847
Lastpage :
1853
Abstract :
In this technical note, we consider the problem of finite-interval parameter smoothing for a class of nonstationary linear stochastic systems subject to both smooth and abrupt parameter changes. The proposed parallel estimation scheme combines the estimates yielded by several exponentially weighted basis function algorithms. The resulting smoother automatically adjusts its smoothing bandwidth to the type and rate of nonstationarity of the identified system. It also allows one to account for the distribution of the measurement noise.
Keywords :
FIR filters; linear systems; parameter estimation; stochastic systems; exponentially weighted basis function algorithms; finite-interval parameter smoothing; measurement noise distribution; noncausal identification approach; nonstationary linear stochastic systems; nonstationary stochastic FIR systems; parallel estimation scheme; parameter changes; Algorithm design and analysis; Estimation; Kalman filters; Noise; Smoothing methods; Trajectory; Vectors; Identification of nonstationary systems; parameter smoothing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2013.2238995
Filename :
6409397
Link To Document :
بازگشت