DocumentCode :
579978
Title :
Combinatorial Coloring of 3-Colorable Graphs
Author :
Kawarabayashi, Ken-ichi ; Thorup, Mikkel
Author_Institution :
Nat. Inst. of Inf., Tokyo, Japan
fYear :
2012
fDate :
20-23 Oct. 2012
Firstpage :
68
Lastpage :
75
Abstract :
We consider the problem of coloring a 3-colorable graph in polynomial time using as few colors as possible. We present a combinatorial algorithm getting down to Õ(n4/11) colors. This is the first combinatorial improvement of Blum´s Õ(n3/8) bound from FOCS´90. Like Blum´s algorithm, our new algorithm composes nicely with recent semi-definite programming approaches. The current best bound is Õ(n0.2072) colors by Chlamtac from FOCS´07. We now bring it down to Õ(n0. 2049) colors.
Keywords :
computational complexity; graph colouring; mathematical programming; 3-colorable graph; Õ(n0.2072) colors; Õ(n0. 2049) colors; Õ(n4/11) colors; combinatorial coloring algorithm; polynomial time; semi-definite programming approaches; Algorithm design and analysis; Approximation algorithms; Approximation methods; Color; Computer science; Electronic mail; Polynomials; Approximation Algorithms; Graph Coloring;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on
Conference_Location :
New Brunswick, NJ
ISSN :
0272-5428
Print_ISBN :
978-1-4673-4383-1
Type :
conf
DOI :
10.1109/FOCS.2012.16
Filename :
6375283
Link To Document :
بازگشت