DocumentCode :
580669
Title :
Predicting Micro Air Vehicle landing behaviour from visual texture
Author :
Bartholomew, John ; Calway, Andrew ; Mayol-Cuevas, Walterio
Author_Institution :
Dept. of Comput. Sci., Univ. of Bristol, Bristol, UK
fYear :
2012
fDate :
7-12 Oct. 2012
Firstpage :
4550
Lastpage :
4556
Abstract :
We introduce a framework to predict the landing behaviour of a Micro Air Vehicle (MAV) from the appearance of the landing surface. We approach this problem by learning a mapping from visual texture observed from an onboard camera to the landing behaviour on a set of sample materials. In this case we exemplify our framework by predicting the yaw angle of the MAV after landing. Our framework demonstrates the applicability of established texture classification methods usually tested on stationary camera setups for the more challenging case of textures observed from a MAV. Results for supervised training demonstrate good estimation of the landing behaviour and motivate future work to implement autonomous decision making strategies and other behaviour predictions based on imagery.
Keywords :
aircraft; autonomous aerial vehicles; image classification; image texture; learning (artificial intelligence); decision making; landing behaviour; landing surface; mapping learning; microair vehicle; onboard camera; texture classification; visual texture; yaw angle; Cameras; Databases; Materials; Sensors; Standards; Training; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on
Conference_Location :
Vilamoura
ISSN :
2153-0858
Print_ISBN :
978-1-4673-1737-5
Type :
conf
DOI :
10.1109/IROS.2012.6385872
Filename :
6385872
Link To Document :
بازگشت