DocumentCode :
581514
Title :
Iterative convergence analysis of subpositive definite linear systems over quaternion field
Author :
Jing-pin, Huang ; Lu-Lu, Ma
Author_Institution :
Coll. of Sci., Guangxi Univ. for Nat., Nanning, China
fYear :
2012
fDate :
25-27 July 2012
Firstpage :
62
Lastpage :
65
Abstract :
In this paper, we discuss convergent splittings of sub-positive definite matrix A over quaternion field. Meanwhile, the QSOR iterative algorithm of the sub-positive definite linear systems AX = B over quaternion field are structured, and convergence of the algorithm is described by using right eigenvalue maximum norm of the quaternion matrix, and the optimal range of parameters are obtained. Secondly, applying the structure preserving iterative of QSOR to realize numerical solutions of the linear systems. The numerical results indicate the method presented in this paper is feasible and efficient.
Keywords :
control system analysis; convergence of numerical methods; eigenvalues and eigenfunctions; iterative methods; linear systems; matrix algebra; QSOR iterative algorithm; control system; iterative convergence analysis; quaternion field; quaternion matrix; right eigenvalue maximum norm; structure preserving iterative; subpositive definite linear systems; subpositive definite matrix; Convergence; Eigenvalues and eigenfunctions; Equations; Iterative methods; Linear systems; Matrix decomposition; Quaternions; QSOR iterative; convergent splitting; right eigenvalue maximum norm; sub-positive definite matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2012 31st Chinese
Conference_Location :
Hefei
ISSN :
1934-1768
Print_ISBN :
978-1-4673-2581-3
Type :
conf
Filename :
6389902
Link To Document :
بازگشت