DocumentCode :
581810
Title :
Parameters recursive identification for minimum variance control
Author :
Jian-hong, Wang
Author_Institution :
Sch. of Mech. & Electron. Eng., Jingdezhen Ceramic Inst., Jingdezhen, China
fYear :
2012
fDate :
25-27 July 2012
Firstpage :
1701
Lastpage :
1706
Abstract :
In this paper, we discuss the problem of parameters recursive identification and designing an optimal input signal for minimum variance control from the point of system identification. Consider the unknown parameter vector of the ARMAX model in the minimum variance closed loop control, we propose multi-innovation recursive least-squares identification method and separable iterative recursive least-squares identification method to identify and estimate the unknown parameters vector in the ARMAX model on line. When excited by the white noise, the two identification methods will give the unbiased estimation about the unknown parameter vector. When excited by the color noise, only the separable iterative recursive least-squares identification method can give the unbiased estimation. Finally, the efficiency and possibility of the proposed strategy can be confirmed by the simulation example results.
Keywords :
closed loop systems; control system synthesis; iterative methods; least squares approximations; parameter estimation; recursive estimation; vectors; white noise; ARMAX model; color noise; minimum variance closed loop control; multiinnovation recursive least-square identification method; optimal input signal design; parameter recursive identification; separable iterative recursive least-square identification method; unbiased estimation; unknown model vector; unknown parameter vector estimation; white noise; Ceramics; Educational institutions; Electronic mail; Estimation; Iterative methods; Vectors; Yttrium; minimum variance control; multi-innovation recursive; separable iterative recursive;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2012 31st Chinese
Conference_Location :
Hefei
ISSN :
1934-1768
Print_ISBN :
978-1-4673-2581-3
Type :
conf
Filename :
6390199
Link To Document :
بازگشت