Title :
Parameter estimation for nonlinear stochastic model using generalized entropy optimization principle
Author :
Yunlong, Liu ; Lei, Guo ; Yumin, Zhang
Author_Institution :
Sch. of Instrum. Sci. & Opto-Electron. Eng., Beihang Univ., Beijing, China
Abstract :
A new type of parameter estimation method has been proposed for a class of nonlinear stochastic model with non-Gaussian disturbance The Parzen window method was first used to estimate the density function of the sampled data and then the generalized entropy optimization principle was used to estimate the unknown parameters. No matter what distribution the noise obeys to, Gaussian or non-Gaussian, unbiased parameter estimated values can be obtained. The simulation results show the effectiveness of the proposed approaches.
Keywords :
Gaussian distribution; entropy; nonlinear systems; optimisation; parameter estimation; sampled data systems; stochastic processes; Gaussian distribution; Parzen window method; density function estimation; generalized entropy optimization principle; noise distribution; nonGaussian distribution; nonGaussian disturbance; nonlinear stochastic model; parameter estimation method; sampled data; Atmospheric modeling; Educational institutions; Electronic mail; Entropy; Optimization; Parameter estimation; Stochastic processes; Parameter Estimation; Parzen window; generalized entropy optimization principle;
Conference_Titel :
Control Conference (CCC), 2012 31st Chinese
Conference_Location :
Hefei
Print_ISBN :
978-1-4673-2581-3