Title :
Identification of linear parameter varying system using flexible least squares
Author :
Zeng Jiusun ; Jin Yang ; Luo Shihua
Author_Institution :
Coll. of Metrol. & Meas. Eng., China Jiliang Univ., Hangzhou, China
Abstract :
This paper introduces the flexible least squares (FLS) for the identification problem of linear parameter varying (LPV) system. FLS considers the measurement error (output estimation error) and dynamic error (parameter estimation error) simultaneously and is suitable for dealing with identification of parameter varying system. It is deduced that FLS is algebraically equivalent to the Kalman filter whose stability criterion has been well developed, a stability criterion is built for FLS in a similar way. Finally we apply FLS to the identification of LPV system, simulation results shown its effectiveness.
Keywords :
Kalman filters; least squares approximations; linear systems; parameter estimation; time-varying systems; FLS; Kalman filter; LPV; dynamic error; flexible least squares; identification problem; linear parameter varying system identification; measurement error; output estimation error; parameter estimation error; Cost function; Equations; Kalman filters; Measurement errors; Parameter estimation; Stability criteria; Linear parameter varying system; flexible least squares; recursive;
Conference_Titel :
Control Conference (CCC), 2012 31st Chinese
Conference_Location :
Hefei
Print_ISBN :
978-1-4673-2581-3