DocumentCode :
588292
Title :
Relative information loss in the PCA
Author :
Geiger, Bernhard C. ; Kubin, Gernot
Author_Institution :
Signal Process. & Speech Commun. Lab., Graz Univ. of Technol., Graz, Austria
fYear :
2012
fDate :
3-7 Sept. 2012
Firstpage :
562
Lastpage :
566
Abstract :
In this work we analyze principle component analysis (PCA) as a deterministic input-output system. We show that the relative information loss induced by reducing the dimensionality of the data after performing the PCA is the same as in dimensionality reduction without PCA. Furthermore, we analyze the case where the PCA uses the sample covariance matrix to compute the rotation. If the rotation matrix is not available at the output, we show that an infinite amount of information is lost. The relative information loss is shown to decrease with increasing sample size.
Keywords :
covariance matrices; data reduction; information theory; principal component analysis; PCA; data dimensionality reduction; deterministic input-output system; principle component analysis; relative information loss; rotation computation; sample covariance matrix; Principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop (ITW), 2012 IEEE
Conference_Location :
Lausanne
Print_ISBN :
978-1-4673-0224-1
Electronic_ISBN :
978-1-4673-0222-7
Type :
conf
DOI :
10.1109/ITW.2012.6404738
Filename :
6404738
Link To Document :
بازگشت