Title :
A risk-constrained multi-stage decision making approach to the architectural analysis of planetary missions
Author :
Kuwata, Yoshiaki ; Pavone, Marco ; Balaram, J.
Author_Institution :
Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
Abstract :
This paper presents a novel risk-constrained multi-stage decision making approach to the architectural analysis of planetary rover missions. In particular, focusing on a 2018 Mars rover concept, which was considered as part of a potential Mars Sample Return campaign, we model the entry, descent, and landing (EDL) phase and the rover traverse phase as four sequential decision-making stages. The problem is to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the probability of a mission failure (e.g., due to a failed landing) is below a user-specified bound. By solving this problem for several different values of the model parameters (e.g., divert authority), this approach enables rigorous, accurate and systematic trade-offs for the EDL system vs. the mobility system, and, more in general, cross-domain trade-offs for the different phases of a space mission. The overall optimization problem can be seen as a chance-constrained dynamic programming problem, with the additional complexity that 1) in some stages the disturbances do not have any probabilistic characterization, and 2) the state space is extremely large (i.e, hundreds of millions of states for trade-offs with high-resolution Martian maps). To this purpose, we solve the problem by performing an unconventional combination of average and minimax cost analysis and by leveraging high efficient computation tools from the image processing community. Preliminary trade-off results are presented.
Keywords :
Mars; decision making; dynamic programming; planetary rovers; state-space methods; 2018 Mars rover concept; EDL phase; EDL system; chance-constrained dynamic programming problem; cross-domain trade-offs; driving maneuvers; entry-descent-landing phase; high-resolution Martian maps; image processing community; minimax cost analysis; mission failure; mobility system; optimization problem; planetary rover mission architectural analysis; potential Mars sample return campaign; probabilistic characterization; risk-constrained multistage decision making approach; rover traverse phase; sequential decision-making stages; state space method; user-specified bound; Hazards; Image processing; Mars; Optimization; Rocks; Space vehicles;
Conference_Titel :
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
Conference_Location :
Maui, HI
Print_ISBN :
978-1-4673-2065-8
Electronic_ISBN :
0743-1546
DOI :
10.1109/CDC.2012.6426090