Title :
New approach to noncausal identification of nonstationary stochastic systems subject to both smooth and abrupt parameter changes
Author :
Niedzwiecki, Maciej ; Gackowski, S.
Author_Institution :
Dept. of Autom. Control, Gdansk Univ. of Technol., Gdansk, Poland
Abstract :
In this paper we consider the problem of finite-interval parameter smoothing for a class of nonstationary linear stochastic systems subject to both smooth and abrupt parameter changes. The proposed parallel estimation scheme combines the estimates yielded by several exponentially weighted basis function algorithms. The resulting smoother automatically adjusts its smoothing bandwidth to the type and rate of nonstationarity of the identified system. It also allows one to account for the distribution of the measurement noise.
Keywords :
identification; linear systems; smoothing methods; stochastic systems; abrupt parameter changes; exponentially weighted basis function algorithms; finite-interval parameter smoothing; measurement noise; noncausal identification; nonstationary linear stochastic systems; parallel estimation scheme; smooth parameter changes; Algorithm design and analysis; Estimation; Mathematical model; Noise; Smoothing methods; Trajectory; Vectors;
Conference_Titel :
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
Conference_Location :
Maui, HI
Print_ISBN :
978-1-4673-2065-8
Electronic_ISBN :
0743-1546
DOI :
10.1109/CDC.2012.6427018