DocumentCode :
593164
Title :
Synthesis of Matsuoka-Based Neuron Oscillator Models in Locomotion Control of Robots
Author :
Liu, C.J. ; Seo, Kazuyuki ; Fan, Zhe ; Tan, X.B. ; Goodman, E.D.
Author_Institution :
Sch. of Electron. & Inf. Eng., Tongji Univ., Shanghai, China
fYear :
2012
fDate :
6-8 Nov. 2012
Firstpage :
342
Lastpage :
347
Abstract :
In this paper we present a numerical study of the Matsuoka-based neuron oscillator model. The Matsuoka-based neuron oscillator model is one of the most popular CPG (central pattern generator) models in robot motion control. In this paper, numerical simulation is conducted to analyze the influence of the parameters on the output signals. A mass-spring-damper system is used as an example to analyze the entrainment properties of the neuron oscillator. The main engineering application methods of these CPG-inspired control methods are concluded. The motivation is to present a practical guide to researchers and engineers interested in the CPG-inspired control approaches.
Keywords :
mobile robots; motion control; neurocontrollers; numerical analysis; springs (mechanical); vibration control; CPG-inspired control method; Matsuoka-based neuron oscillator model; central pattern generator model; entrainment properties; locomotion control; mass-spring-damper system; numerical simulation; robot motion control; signal parameter; Biological system modeling; Legged locomotion; Mathematical model; Neurons; Numerical models; Oscillators; CPG; Matsuoka model; Neuron oscillator; motion control; robot;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems (GCIS), 2012 Third Global Congress on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4673-3072-5
Type :
conf
DOI :
10.1109/GCIS.2012.99
Filename :
6449550
Link To Document :
بازگشت