DocumentCode :
59450
Title :
Developing a Multi-Joint Upper Limb Exoskeleton Robot for Diagnosis, Therapy, and Outcome Evaluation in Neurorehabilitation
Author :
Yupeng Ren ; Sang Hoon Kang ; Hyung-Soon Park ; Yi-Ning Wu ; Li-Qun Zhang
Author_Institution :
Rehabilitation Inst. of Chicago, Chicago, IL, USA
Volume :
21
Issue :
3
fYear :
2013
fDate :
May-13
Firstpage :
490
Lastpage :
499
Abstract :
Arm impairments in patients post stroke involve the shoulder, elbow and wrist simultaneously. It is not very clear how patients develop spasticity and reduced range of motion (ROM) at the multiple joints and the abnormal couplings among the multiple joints and the multiple degrees-of-freedom (DOF) during passive movement. It is also not clear how they lose independent control of individual joints/DOFs and coordination among the joints/DOFs during voluntary movement. An upper limb exoskeleton robot, the IntelliArm, which can control the shoulder, elbow, and wrist, was developed, aiming to support clinicians and patients with the following integrated capabilities: 1) quantitative, objective, and comprehensive multi-joint neuromechanical pre-evaluation capabilities aiding multi-joint/DOF diagnosis for individual patients; 2) strenuous and safe passive stretching of hypertonic/deformed arm for loosening up muscles/joints based on the robot-aided diagnosis; 3) (assistive/resistive) active reaching training after passive stretching for regaining/improving motor control ability; and 4) quantitative, objective, and comprehensive neuromechanical outcome evaluation at the level of individual joints/DOFs, multiple joints, and whole arm. Feasibility of the integrated capabilities was demonstrated through experiments with stroke survivors and healthy subjects.
Keywords :
biomechanics; medical disorders; medical robotics; motion control; muscle; neurophysiology; patient diagnosis; patient rehabilitation; patient treatment; robot kinematics; IntelliArm; arm impairments; assistive-resistive active reaching training; comprehensive multijoint neuromechanical preevaluation capability; elbow; healthy subjects; hypertonic-deformed arm; multijoint upper limb exoskeleton robot; multiple degrees-of-freedom; muscle-joint loosening; neurorehabilitation; objective multijoint neuromechanical preevaluation capability; passive movement; patient diagnosis; patient therapy; post-stroke patients; quantitative multijoint neuromechanical preevaluation capability; reduced range-of-motion; regaining-improving motor control ability; robot-aided diagnosis; safe passive stretching; shoulder; strenuous stretching; stroke survivors; voluntary movement; wrist; Elbow; Joints; Read only memory; Robot kinematics; Shoulder; Wrist; Neurorehabilitation; rehabilitation robotics; robot-aided diagnosis; robot-assisted therapy; Arm; Diagnosis, Computer-Assisted; Equipment Design; Equipment Failure Analysis; Humans; Man-Machine Systems; Motion Therapy, Continuous Passive; Movement Disorders; Orthotic Devices; Robotics; Therapy, Computer-Assisted; Treatment Outcome;
fLanguage :
English
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1534-4320
Type :
jour
DOI :
10.1109/TNSRE.2012.2225073
Filename :
6335485
Link To Document :
بازگشت