DocumentCode :
594737
Title :
Regularization parameter estimation for spectral regression discriminant analysis based on perturbation theory
Author :
Jie Gui ; Zhenan Sun ; Tieniu Tan
Author_Institution :
Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
fYear :
2012
fDate :
11-15 Nov. 2012
Firstpage :
401
Lastpage :
404
Abstract :
Spectral regression discriminant analysis (SRDA) is an important subspace learning method. It has a tunable parameter, i.e., the regularization parameter, which critically affects the performance. However, how to set this parameter automatically has not been well solved to date. In SRDA, this regularization parameter was only set as a constant, which is usually suboptimal. In this paper, we develop a new algorithm to automatically estimate the regularization parameter of SRDA based on the perturbation linear discriminant analysis (PLDA). Experiments on multiple data sets demonstrate the effectiveness of the proposed method.
Keywords :
feature extraction; learning (artificial intelligence); parameter estimation; perturbation theory; regression analysis; PLDA-based SRDA; automatic estimation; multiple data sets; perturbation linear discriminant analysis-based SRDA; perturbation theory-based spectral regression discriminant analysis; regularization parameter estimation; subspace learning method; tunable parameter; Accuracy; Algorithm design and analysis; Eigenvalues and eigenfunctions; Linear discriminant analysis; Parameter estimation; Pattern recognition; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
ISSN :
1051-4651
Print_ISBN :
978-1-4673-2216-4
Type :
conf
Filename :
6460156
Link To Document :
بازگشت