DocumentCode :
594748
Title :
BoVDW: Bag-of-Visual-and-Depth-Words for gesture recognition
Author :
Hernandez-Vela, A. ; Bautista, M.A. ; Perez-Sala, X. ; Ponce, V. ; Baro, X. ; Pujol, Olivier ; Angulo, Cecilio ; Escalera, Sergio
Author_Institution :
Dept. MAIA, Univ. de Barcelona, Barcelona, Spain
fYear :
2012
fDate :
11-15 Nov. 2012
Firstpage :
449
Lastpage :
452
Abstract :
We present a Bag-of-Visual-and-Depth-Words (BoVDW) model for gesture recognition, an extension of the Bag-of-Visual-Words (BoVW) model, that benefits from the multimodal fusion of visual and depth features. State-of-the-art RGB and depth features, including a new proposed depth descriptor, are analysed and combined in a late fusion fashion. The method is integrated in a continuous gesture recognition pipeline, where Dynamic Time Warping (DTW) algorithm is used to perform prior segmentation of gestures. Results of the method in public data sets, within our gesture recognition pipeline, show better performance in comparison to a standard BoVW model.
Keywords :
gesture recognition; image retrieval; BoVDW model; BoVW model; DTW algorithm; RGB features; bag-of-visual-and-depth-words; bag-of-visual-words model; continuous gesture recognition pipeline; depth descriptor; depth features; dynamic time warping algorithm; late fusion fashion; multimodal fusion; visual features; Cameras; Computational modeling; Detectors; Gesture recognition; Histograms; Pipelines; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
ISSN :
1051-4651
Print_ISBN :
978-1-4673-2216-4
Type :
conf
Filename :
6460168
Link To Document :
بازگشت