DocumentCode :
595317
Title :
k-MLE for mixtures of generalized Gaussians
Author :
Schwander, O. ; Schutz, A.J. ; Nielsen, Frank ; Berthoumieu, Yannick
Author_Institution :
Ecole Polytech., Palaiseau, France
fYear :
2012
fDate :
11-15 Nov. 2012
Firstpage :
2825
Lastpage :
2828
Abstract :
We introduce an extension of the k-MLE algorithm, a fast algorithm for learning statistical mixture models relying on maximum likelihood estimators, which allows to build mixture of generalized Gaussian distributions without a fixed shape parameter. This allows us to model finely probability density functions which are made of highly non Gaussian components. We theoretically prove the local convergence of our method and show experimentally that it performs comparably to Expectation-Maximization methods while being more computationally efficient.
Keywords :
Gaussian distribution; expectation-maximisation algorithm; learning (artificial intelligence); expectation-maximization methods; generalized Gaussian distributions; k-MLE algorithm; learning; local convergence; maximum likelihood estimators; nonGaussian components; probability density functions; statistical mixture models; Clustering algorithms; Computational modeling; Convergence; Cost function; Gaussian distribution; Maximum likelihood estimation; Shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
ISSN :
1051-4651
Print_ISBN :
978-1-4673-2216-4
Type :
conf
Filename :
6460753
Link To Document :
بازگشت