DocumentCode :
595416
Title :
Efficient incremental learning of boosted classifiers for object detection
Author :
Sharma, Parmanand ; Huang, Chao ; Nevatia, Ramakant
Author_Institution :
Univ. of Southern California, Los Angeles, CA, USA
fYear :
2012
fDate :
11-15 Nov. 2012
Firstpage :
3248
Lastpage :
3251
Abstract :
Significant progress has been made towards learning a generalized offline object detector. However, when a generalized offline detector is applied on new datasets, it often misses some instances of the object or produces false alarms in the background scene. we propose a novel and efficient incremental learning method, which improves the performance of an offline trained detector. Our approach adjusts the parameters of offline trained cascade of boosted classifiers using manually labeled online samples. Experiments demonstrate both efficiency and effectiveness of our approach.
Keywords :
image classification; learning (artificial intelligence); natural scenes; object detection; performance evaluation; background scene; false alarms; generalized offline object detector; incremental learning method; manually labeled online samples; object detection; offline trained boosted classifier cascade parameters; performance improvement; Boosting; Detectors; Humans; Object detection; Optimization; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
ISSN :
1051-4651
Print_ISBN :
978-1-4673-2216-4
Type :
conf
Filename :
6460857
Link To Document :
بازگشت