DocumentCode :
595543
Title :
Optimal consensus set and preimage of 4-connected circles in a noisy environment
Author :
Largeteau-Skapin, G. ; Zrour, R. ; Andres, Emmanuel ; Sugimoto, Akihiro ; Kenmochi, Yukiko
Author_Institution :
SIC Dept., Univ. of Poitiers, Futuroscope Chasseneuil, France
fYear :
2012
fDate :
11-15 Nov. 2012
Firstpage :
3774
Lastpage :
3777
Abstract :
This paper exploits the problem of fitting special forms of annuli that correspond to 4-connected digital circles to a given set of points in 2D images in the presence of noise by maximizing the number of inliers, namely the consensus set. We prove that the optimal solutions can be described by solutions with three points on the annulus boundary. These solutions correspond to vertices of the preimage of the annulus in the parameter space thus allowing us to build the preimage and to enumerate all the optimal solutions.
Keywords :
geometry; image processing; 2D images; 4-connected digital circles; annulus boundary; connected digital circles; optimal consensus set; parameter space; preimage; special form fitting; Image analysis; Noise measurement; Pattern recognition; Standards; Time complexity; Vectors; Zinc;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
ISSN :
1051-4651
Print_ISBN :
978-1-4673-2216-4
Type :
conf
Filename :
6460986
Link To Document :
بازگشت