DocumentCode :
596154
Title :
Incorporating Expert Judgment into Regression Models of Software Effort Estimation
Author :
Tsunoda, Masafumi ; Monden, Akito ; Keung, Jacky ; Matsumoto, Kaname
Author_Institution :
Fac. of Inf. Sci. & Arts, Toyo Univ., Saitama, Japan
Volume :
1
fYear :
2012
fDate :
4-7 Dec. 2012
Firstpage :
374
Lastpage :
379
Abstract :
One of the common problems in building an effort estimation model is that not all the effort factors are suitable as predictor variables. As a supplement of missing information in estimation models, this paper explores the project manager´s knowledge about the target project. We assume that the experts can judge the target project´s productivity level based on his/her own expert knowledge about the project. We also assume that this judgment can be further improved, because using the expert´s judgment solely could incur subjective perception. This paper proposes a regression model building/selection method to address this challenge. In the proposed method, a fit dataset for model building is divided into two or three subsets by project productivity, and an estimation model is built on each data subset. The expert judges the productivity level of the target project and selects one of the models to be used. In the experiment, we used three datasets to evaluate the produced effort estimation models. In the experiment, we adjusted the error rate of the judgment and analyzed the relationship between the error rate and the estimation accuracy. As a result, the judgment-incorporating models produced significantly higher estimation accuracy than the conventional linear regression model, where the expert´s error rate is less than 37%.
Keywords :
regression analysis; software cost estimation; software development management; expert judgment; judgment-incorporating model; linear regression model; predictor variable; project manager; project productivity; project productivity level; regression model building method; regression model selection method; software effort estimation; subjective perception; Software engineering; Estimation error; Expert Judgment; Productivity; Project Management; Software Effort Estimation; Stratification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Software Engineering Conference (APSEC), 2012 19th Asia-Pacific
Conference_Location :
Hong Kong
ISSN :
1530-1362
Print_ISBN :
978-1-4673-4930-7
Type :
conf
DOI :
10.1109/APSEC.2012.58
Filename :
6462683
Link To Document :
بازگشت