DocumentCode :
596634
Title :
Strong convergence of numerical solutions of nonlinear hybrid stochastic delay differential equations
Author :
Yan Li ; Yi Shen
Author_Institution :
Dept. of Control Sci. & Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China
fYear :
2012
fDate :
18-20 Oct. 2012
Firstpage :
509
Lastpage :
514
Abstract :
In this paper, the strong convergence of numerical solutions of nonlinear hybrid stochastic delay differential equations is investigated. The coefficients of nonlinear hybrid stochastic delay differential equations satisfy the monotone conditions motivated by many finance and biology models. The strong convergence results is obtained by using stochastic θ-Euler Maruyama scheme.
Keywords :
convergence of numerical methods; nonlinear differential equations; partial differential equations; stochastic processes; monotone condition satisfaction; nonlinear hybrid stochastic delay differential equation; numerical solution convergence; stochastic θ-Euler Maruyama scheme; Conferences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International Conference on
Conference_Location :
Nanjing
Print_ISBN :
978-1-4673-1743-6
Type :
conf
DOI :
10.1109/ICACI.2012.6463216
Filename :
6463216
Link To Document :
بازگشت