DocumentCode :
598132
Title :
Blur kernel estimation to improve recognition of blurred faces
Author :
Chi Ho Chan ; Kittler, Josef
Author_Institution :
Centre for Vision, Univ. of Surrey, Guildford, UK
fYear :
2012
fDate :
Sept. 30 2012-Oct. 3 2012
Firstpage :
1989
Lastpage :
1992
Abstract :
This paper proposes an efficient blind deconvolution method to deblur face images for face recognition. The method involves a salient edge map construction, blur kernel estimation and face image deconvolution. The combined Yale and Extended Yale face database B containing different illumination changes and blur conditions are used to evaluated the face identification system. The results show that the accuracy of the face recognition systems implemented with the proposed method improves the accuracy when the faces are degraded by blur in general and motion blur in particular.
Keywords :
deconvolution; edge detection; face recognition; image restoration; lighting; visual databases; blur conditions; blur kernel estimation; blurred face recognition system; efficient blind deconvolution method; extended Yale face database B; face identification system; face image deblurring; face image deconvolution; illumination changes; motion blur; salient edge map construction; Databases; Deconvolution; Estimation; Face recognition; Image edge detection; Kernel; Lighting; Face Recognition; Face preprocessing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2012 19th IEEE International Conference on
Conference_Location :
Orlando, FL
ISSN :
1522-4880
Print_ISBN :
978-1-4673-2534-9
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2012.6467278
Filename :
6467278
Link To Document :
بازگشت