Title :
T*: A data-centric cooling energy costs reduction approach for Big Data analytics cloud
Author :
Kaushik, R.T. ; Nahrstedt, Klara
Author_Institution :
Univ. of Illinois, Urbana, IL, USA
Abstract :
Explosion in Big Data has led to a surge in extremely large-scale Big Data analytics platforms, resulting in burgeoning energy costs. Big Data compute model mandates strong data-locality for computational performance, and moves computations to data. State-of-the-art cooling energy management techniques rely on thermal-aware computational job placement/migration and are inherently data-placement-agnostic in nature. T* takes a novel, data-centric approach to reduce cooling energy costs and to ensure thermal-reliability of the servers. T* is cognizant of the uneven thermal-profile and differences in thermal-reliability-driven load thresholds of the servers, and the differences in the computational jobs arrival rate, size, and evolution life spans of the Big Data placed in the cluster. Based on this knowledge, and coupled with its predictive file models and insights, T* does proactive, thermal-aware file placement, which implicitly results in thermal-aware job placement in the Big Data analytics compute model. Evaluation results with one-month long real-world Big Data analytics production traces from Yahoo! show up to 42% reduction in the cooling energy costs with T* courtesy of its lower and more uniform thermal-profile and 9x better performance than the state-of-the-art data-agnostic cooling techniques.
Keywords :
cloud computing; cooling; cost reduction; energy conservation; power aware computing; Big Data analytic cloud; T* courtesy; Yahoo!; computational performance; data locality; data placement agnostic; data-centric cooling energy cost reduction approach; large-scale Big Data analytic platform; thermal aware file placement; thermal profile; thermal reliability-driven load threshold; thermal-aware computational job migration; thermal-aware computational job placement; Approximation methods; Cooling; Data handling; Data storage systems; Information management; Servers; Thermal management;
Conference_Titel :
High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for
Conference_Location :
Salt Lake City, UT
Print_ISBN :
978-1-4673-0805-2
DOI :
10.1109/SC.2012.103