DocumentCode :
598682
Title :
Principal points estimation using mixture distributions
Author :
Ueki, D. ; Matsuura, Saeko ; Suzuki, Hajime
Author_Institution :
Grad. Sch. of Sci. & Technol., Keio Univ., Yokohama, Japan
fYear :
2012
fDate :
1-2 Dec. 2012
Firstpage :
219
Lastpage :
222
Abstract :
The k-principal points of a distribution are the k points that optimally partition the distribution. In this paper, we propose a method to estimate principal points from data by using mixture distributions when we have no prior knowledge of the distribution of data. Several simulation results are presented to compare the proposed method with the nonparametric k-means.
Keywords :
data analysis; estimation theory; statistical distributions; data distributions; k-principal points; mixture distributions; nonparametric k-means method; principal points estimation; Clustering algorithms; Data models; Educational institutions; Estimation; Gaussian distribution; Partitioning algorithms; Simulation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computer Science and Information Systems (ICACSIS), 2012 International Conference on
Conference_Location :
Depok
Print_ISBN :
978-1-4673-3026-8
Type :
conf
Filename :
6468726
Link To Document :
بازگشت