DocumentCode :
600106
Title :
Small-size lung nodule modeling and detection with clinical evaluation
Author :
Farag, Aly ; Graham, James ; Abdelmunim, Hossam ; Elshazly, Salwa ; Ei-Mogy, M. ; Ei-Mogy, S. ; Falk, Robert ; Farag, A.A.
Author_Institution :
Comput. Vision & Image Process. Lab. (CVIP Lab.), Univ. of Louisville, Louisville, KY, USA
fYear :
2012
fDate :
20-22 Dec. 2012
Firstpage :
44
Lastpage :
47
Abstract :
In this paper examination of the template modeling process using the Active Appearance Modeling (AAM) approach for automatic detection of lung nodules is investigated. A template matching approach is formulated to compute a similarity score between the AAM templates and the input lung CT slice, where the goal is to maximize the similarity measure at different image pixels to increase nodule detection. The template matching approach is implemented using nine similarity measures. Performance validation for the robustness of the generated models is tested on three clinical databases.
Keywords :
computerised tomography; image matching; lung; medical image processing; pneumodynamics; AAM approach; active appearance modeling approach; automatic detection; clinical evaluation; image pixels; lung CT slice; lung detection; nodule detection; performance validation; similarity score; small-size lung nodule modeling; template matching approach; template modeling process; Computational modeling; Computed tomography; Databases; Lungs; Principal component analysis; Solid modeling; Data-driven; Lung nodule modeling; nodule detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Engineering Conference (CIBEC), 2012 Cairo International
Conference_Location :
Giza
ISSN :
2156-6097
Print_ISBN :
978-1-4673-2800-5
Type :
conf
DOI :
10.1109/CIBEC.2012.6473332
Filename :
6473332
Link To Document :
بازگشت