Title :
Visual-inertial navigation with guaranteed convergence
Author :
Di Corato, Francesco ; Innocenti, M. ; Pollini, Lorenzo
Author_Institution :
Dept. of Energy & Syst. Eng., Univ. of Pisa, Pisa, Italy
Abstract :
This contribution presents a constraints-based loosely-coupled Augmented Implicit Kalman Filter approach to vision-aided inertial navigation that uses epipolar constraints as output map. The proposed approach is capable of estimating the standard navigation output (velocity, position and attitude) together with inertial sensor biases. An observability analysis is proposed in order to define the motion requirements for full observability of the system and asymptotic convergence of the parameter estimations. Simulations are presented to support the theoretical conclusions.
Keywords :
Kalman filters; convergence; image matching; image motion analysis; image sensors; inertial navigation; observability; parameter estimation; stereo image processing; asymptotic convergence; attitude estimation; constraint-based loosely- coupled augmented implicit Kalman filter approach; epipolar constraints; inertial sensor bias; motion requirements; observability analysis; output map; position estimation; standard navigation output parameter estimation; velocity estimation; vision-aided inertial navigation; Cameras; Equations; Estimation; Navigation; Observability; Standards; Visualization;
Conference_Titel :
Robot Vision (WORV), 2013 IEEE Workshop on
Conference_Location :
Clearwater Beach, FL
Print_ISBN :
978-1-4673-5646-6
Electronic_ISBN :
978-1-4673-5647-3
DOI :
10.1109/WORV.2013.6521930